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SUMMARY

The eigenvalue equation of a three layer spheri-

cal resonator with arbitrary material parameters

and an anisotropic dielectric inner sphere is de-

scribed. The axial-symmetric modes of the resona-
tor, the field distributions, the Q-factors and

applications are discussed.

INTRODUCTION

Spherical isotropic resonators have been discus-
sed in the literature since nearly 80 years /l/-

/10/. Primarily the famous work of Debye /1/ must
be mentioned here, because most of the theoreti-

cal questions in connection with spherical isotro-

pic resonators have been solved already In this

classical work. J.Broc /3/ in 1950 intensively

studied the case of the spherical resonator for-

med by two concentric metallic spheres, M.Gastine

et al. /5/, /6/ analyzed the free dielectric
sphere and Affolter et al. /7/, /8/ described the

spherical dielectric resonator enclosed in a

metsllic sphere.

Spherical resonators for many reasons are interes-
ting and can be used in different applications:

- The spherical cavity is the cavity with the
highest possible Q-factor because Its volume to

surface ratio is the biggest of all possible

cavity stuctures

- Spheres can be produced eas~ly; this is especi-
ally true in the case of dielectric spheres
with small diameters for applications In MICS

- The excitation of the electromagnetic fields in
a spherical cavity is easily done

- The isotropic spherical resonator has a three-

fold degenerated eigenresonance which can be

used for special applications as w1ll be shown.

In this paper a generalized theory shall be

given, which describes a spherical structure of

three concentric spheres with arbitrary isotropic

material parameters; additionally it will be assu-

med, that the inner sphere can be an uniaxially

anisotroplc dielectric material. The eigenvalue

equation of the electromagnetic fields in this
structure WI1l be derived, the eigenfrequencles,

field distributions, possible modes and the Q-fac-
tors shall be discussed. Finally the applications

of SPherlCal resonators WI1l be discussed.

THE

It is

inner

can be

ELECTROMAGNETIC FIELD OF THE ANISOTROPIC
SPHERE

assumed that the material properties of the

uniaxially anlsotroplc dielectric sphere

described by the permittivity tensor:

‘= [!l:2!31
(1)

Let E’ and H’ be the electric and the magnetic

field strength, respectively, then reduced field

quantities E and H are introduced by:

;=j~o;’, ;=~o;l (2)

to simplify the field equations. Then the electro-

magnetic field inside the sphere can be described

by Maxwells equations in spherical coordinates:

+(sin~HQ)-~H% .

kOrsin~(Er(sin2~(e1cos2@+c2sin2~) +E3COS28)

+E~(sin8cos~(&1cos2@+&2sin2Q-E3) )

+E@(sinfkcosQsinQ (E2-S1 ))) ,
(3)

l/sin~}H
6Q r

‘+(rH@) =

kOr (Er(sin~cos~(el cos2~+s2sin2~-e3) )

+ E~(cos28(clcos2~+e2sin2~) +c3sin28)

+ Ev(sinVcos~cos8(s2-&l ))) ,
(4)

#-(rH@- ~ Hr =

kor (Er(S~mhi.mpCOS(p(E 2-E1) )

+ Eti(sinQcos@cos~(E2-E1 ))

+ EO(elsir12~+&2cos2V) ) ,

(5)
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&(sin~EQ)-+ Es= kor sin8Hr ,

(6)

l/sin S *-~Er-~ (rEQ) = kOr H~ ,

(7)

~(rE~)- ~ Er = kOr H@ .
(8)

If an uniaxlally anisotropic material with ~1.c2

and if only modes, which are independent of the

azimuthal angle, are considered, solutions in the

form of EmnO- and HmnO-modes as in the case of

the Isotropic sphere can be found and the follo-
wing coupled wave equations can be derived for

the H@ -components of the EmnO-modes in an

uniaxially anisotropic material described by the

permittivitiea S1 and S3:

= kOr
‘1-E3 6
‘[~(f(HQ)sinS)-~(r f(HQ)ccxsS)],

‘1

2 (9)

‘ith ‘o= ‘o ‘o and:
f(HQ) =

*%(singHv) ‘~(r H@)cos~]

(10)
and for the E~ -components of the Hmno-modes:

.
lb

(sin~E@)]+k~r2slEv= O.r~(eEV)+~[~~
tir

(11)

As (11) shows, the electromagnetic fields of the

H -modes
mnO

are described by the same differential

equations as for the case of the isotropic sphere

with a permittivity ~, whereas the Emno-modes

are influenced by the anisotropy of

dielectric material. A solution for

H@ -components described by equ.

in form of a series expansion as

(9) can be
given in (12

the

the

ound

(12)

where Y are the spherical Besselfunctions and
n

P: are the associated Legendre- polynomia
and

where the amplztude coefficients are not

Independent of each other. As further
investigations show , this result can be interpre-

ted so, that the electromagnetic field inside the

aniaotro~ic s~here can be described bv a suoerDo–

sition of coupled E
m(n-2)0-3

~ ‘ and
mnO-

-modes of the Isotropic sphere.
‘m(n+2)0

THE THREE LAYER SPHERICAL RESONATOR

A three-layer spherical resonator as shown in
Fig.1, in which the inner spherical dielectric

material may be an isotropic or uniaxially aniao-
tropic material will be considered and the

eigenvalue equation of this general spherical

resonator is solved.

Fig.1: The three-layer spherical resonator.

The permittivities, permeabilities and conductivl-
ties of all layers may be of arbitrary value.
Uamg this model of a spherical resonator the

following microwave resonators can be discussed

by one theory (Fig.2):

&o

r2 &o
c)

d) ‘u’s ‘)

Fiq.2: Several spherical resonator structures,

which can” be analyzed, using the described
field theory.

The free isotropic and anisotropic dielectric
sphere in vacuum (Fig.2a)

The spherical cavity with or without an inner
dielectric sphere (Fig.2b)

The spherical cavity with or without an inner

dielectric sphere (Fig.2c)

The free conducting sphere of one or two layera

(Fig.2d)

The spherical cavity with or without an inner
conducting sphere (Fig.2e) etc..
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RESULTS

Several problems can be solved using this model

of a spherical resonator, which could not be dis-

cussed before, e.g. the two layer dielectric cavi-

ty or open resonator can be used to analyze and

optimize the dimen.siorls and the Q- factor of this

stucture by using two materials of different die-

lectric constants. If the structure in Flg.2b is

considered, for the first time the correct conver-

gence of the cavity modes into the modes of

the free dielectric sphere can be studied by chan-
ging the cor)ductivity of layer 3 from very high

values (metal) to zero (vacuum).

Only some typical results can be d~scussed here.

If the Isotropic resonators are considered, the

H -mode is the fundamental mode in the case of

ti!~o free dielectric
‘pherec~~~ ‘!~E?!~-mS~~i~;

the fundamental mode in the

resonator.

In Fig.3a) typical results for the resonant fre-

quency of a two-layer dielectric resonator in va-

cuum is shown for a constant dielectric constant
of the inner sphere in dependence on the ratio of

the radius r of the inner sphere to the radius

of the oute~ sphere wlt.h r2.3.5mm.const..
‘2

I12

2
t I

Fig.3a):

Fig. 3b)

r,lrz ————9

Dependence of the resonant frequencies
of a two layer dielectric resonator in

vacuum on the ratio of the sphere radii
and with the dielectric constant as a

parameter.

shows the adjoint Q-factors of the reso-

nators for the case of lossless dielectric mate-
rials, i.e. that the losses are pure radiation

losses. As can be seen from Fig.3b) there 1s no
optimal radius-ratio for which the Q-factor e.g.

is maximum; the highest Q-factor 1s found for the
case of the resonator with only one layer which

additionally has the highest value of the dielec
tric constant. The Q-factor of the two-layer die-

lectric resonator continuously Increases with an

increasing (medium) dielectric constant of the

resonator, i.e. with Increasing radius-ratio.

This result may change in the case, that the

dielectric losses are considered additionally and

the loss factors of the two layers differ by a

large amount.
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Fig.3b): The Q-factors of a two-layer dielectric

resonator In vacuum in dependence on the
radius-ratio and with the dielectric

constant as parameter.

The results for the resonant frequencies of a clo-

sed cavity behave in a similar way as In the case

of the free resonator (Fig.4a); as mentioned
above, the fundamental mode of this resonator is

the Ello-mode.

t
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Fig.4a): Dependence of the resonant frequencies

of a cavity resonator with two dlelec-

layers on the radius-ratio and with the
dielectric constant as a parameter.

The Q-factora (again for lossless dieletrlc mate-

rials) on the other side show a clear maximum in
dependence on the radius rl of the inner sphere,
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Fig.4b): The Q-factors of a two-layer dielectric

cavity in dependence on the radius-ratio

and with the dielectric constant as a
parameter.

if the radius r of the outer sphere is kept con-

stant. This opti~um value is determined by the

field concentration of the electric field inside

the inner sphere and the minimum current density

in the conducting walls of the cavity. This op-

timum value is essential for many applications

e.g. in measurement techniques, where high

Q-factors are needed.

If the inner sphere e.g. of the cavity shown in

Fig. 2b is uniaxially anisotropic, as described
in the first part of this paper, the threefold de-

generacy of the resonant frequency is broken up

and at least two different resonant frequencies

can be measured for the EmnO-modes dependent on

the orientation of the main crystal axis with

respect to the excited electromagnetic field in-

side the spherical resonator. Fig.5 shows the me-

aaured resonant frequencies of an uniaxially ani-

sotropic sphere in a spherical cavity for diffe-

rent orientations of the spherical insert with

respect to the exciting field probes.

In equ.(9) it is assumed, that the main crystal
axis is parallel to the z-axis of the coordinate
system. As the field equations show, The E
modes then only have

t~e ‘~:it~~na~r-’
an!ln!;

E&-component, but by coupling

between these three field components, as it is
e.g. described by equ.(3), compared to the

isotropic resonator, the field distribution is

much more complicate. It has already been shortly

described in eou.(12) how a solution of the com-
plicate field problem can be
clearly shows , the resonant

modes which are excited with

parallel to the z-axis are

parameters of the permittivity

found. As equ.(9)
frequencies of the

an electric field

influenced by both

tensor.

4,946 GHz

$
4,947 4,966 GHz

4,947 4,966 GHz

4,948/4,965 GHz

1
A

4,949/48964 GHz

Flg.5: Measured resonance frequencies of an an-

isotropic spherical cavity (Ca (VO ) )

Z48’for different orientations of he sp erl-
cal dielectric insert inside the cavity.

Applications of spherical resonators can be found

in all microwave structures, where dielectric re-
sonators are used; especially in the milllmeter-

wave region spheres are advantageous because they

easily can be produced precisely and with optical

surfaces. The isotropic and anisotropic spherical
three-layer resonator can be used for the accura-
te measurement of the conductivity and perm~tti-

vity of isotropic and anisotropic dielectric ma-

terials.
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